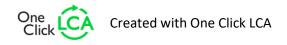


ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025


HIT-Z Hilti AG

EPD HUB, HUB-3507

Published on 20.06.2025, last updated on 20.06.2025, valid until 20.06.2030

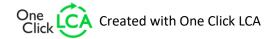
Life Cycle Assessment study has been performed in accordance with the requirements of EN 15804, EPD Hub PCR version 1.1 (5 Dec 2023) and JRC characterization factors EF 3.1.

GENERAL INFORMATION

MANUFACTURER

MANUFACTURER	
Manufacturer	Hilti AG
Address	Feldkircherstrasse 100, FL-9494, Schaan, LI
Contact details	sustainability@hilti.com
Website	www.hilti.group
EPD STANDARDS, SCOPE	AND VERIFICATION
Program operator	EPD Hub, hub@epdhub.com
Reference standard	EN 15804+A2:2019 and ISO 14025
PCR	EPD Hub Core PCR Version 1.1, 5 Dec 2023
Sector	Construction product
Category of EPD	Third party verified EPD
Parent EPD number	-
Scope of the EPD	Cradle to gate with options, A4-A5, and modules C1-C4, D
EPD author	Ege Oguzhan Parlak
EPD verification	Independent verification of this EPD and data, according to ISO 14025: ☐ Internal verification ☑ External verification
EPD verifier	Imane Uald Lamkaddam as an authorized verifier for EPD Hub

This EPD is intended for business-to-business and/or business-to-consumer communication. The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.


PRODUCT

2

Product name	HIT-Z
Additional labels	
Product reference	2018415
Place of production	Schaan, Liechtenstein
Period for data	2024
Averaging in EPD	No grouping
Variation in GWP-fossil for A1-A3 (%)	-
GTIN (Global Trade Item Number)	-
NOBB (Norwegian Building Product Database)	-
A1-A3 Specific data (%)	2,6

ENVIRONMENTAL DATA SUMMARY

Declared unit	1 kg
Declared unit mass	1 kg
GWP-fossil, A1-A3 (kgCO₂e)	2,59E+00
GWP-total, A1-A3 (kgCO₂e)	2,57E+00
Secondary material, inputs (%)	35,2
Secondary material, outputs (%)	85
Total energy use, A1-A3 (kWh)	8,51
Net freshwater use, A1-A3 (m³)	0,02

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

The Hilti Group supplies the worldwide construction and energy industries with technologically leading products, systems, software and services. With about 33,000 team members in over 120 countries the company stands for direct customer relationships, quality and innovation. Hilti generated annual sales of more than CHF 6.3 billion in 2022. The headquarters of the Hilti Group have been located in Schaan, Liechtenstein, since its founding in 1941. The company is privately owned by the Martin Hilti Family Trust, which ensures its long-term continuity. The Hilti Group's purpose is making construction better, based on a passionate and inclusive global team and a caring and performance-oriented culture.

PRODUCT DESCRIPTION

Ultimate-performance anchor rod for injectable hybrid anchors (carbon steel) with the features:

- Suitable for very high loads in cracked concrete and seismic applications according to ICC-ES and ETA C2 approvals
- No hole cleaning required (above 5°C/41°F) with HIT-HY 200
- More reliable and productive solution thanks to potential elimination of the hole cleaning process
- Variable depth of embedment to fully utilise the anchor capacity
- Head marking for easy verification of rod length, even after installation

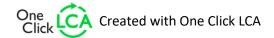
100% of the declared product derives from basic oxygen furnace (BOF) produced steel and carries secondary material (recycled material) content of 20%. Based on the most comprehensive market information and internal evaluations available, the pre-consumer share is on average approximately 30% (out of 20%), which means a 6% share of the steel components, while the post-consumer share is on average approximately 70% (out of 20%), which means a 14% share of the steel components.

Applications:

- Fastenings in cracked and uncracked concrete made with Hilti HIT-HY 200
- Seismic anchoring applications (e.g. bracing of reinforced concrete buildings)
- Anchoring structural steel connections (e.g. steel columns, beams)
- Anchoring secondary steel structures (e.g. racking, guard rails, sound barriers)

Further information can be found at: www.hilti.group

PRODUCT RAW MATERIAL MAIN COMPOSITION


Raw material category	Amount, mass %	Material origin
Metals	100	Europe
Minerals	0	
Fossil materials	0	
Bio-based materials	0	

BIOGENIC CARBON CONTENT

3

Product's biogenic carbon content at the factory gate

Biogenic carbon content in product, kg C	0
Biogenic carbon content in packaging, kg C	0,038

FUNCTIONAL UNIT AND SERVICE LIFE

Declared unit	1 kg
Mass per declared unit	1 kg
Functional unit	
Reference service life	

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).

PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

Pro	duct st	tage		mbly age			U	se sta	ge			E	nd of l	ife stag	ge		the n ies	
A1	A2	А3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4		D	
×	×	×	×	×	MND	MD	MD	MND	MND	MND	MND	×	×	×	×		×	
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction/ demolition	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling

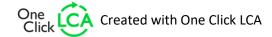
Modules not declared = MND. Modules not relevant = MNR

MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

A market-based approach is used in modelling the electricity mix utilized in the factory.

For module A1, transport of raw materials to the manufacturing site is modeled using >32 metric ton EURO 5 lorries over distances ranging from 600 to 670 km. A production loss of 1% is considered during processing. The manufacturing process includes sheet rolling and wire drawing, representative of typical metalworking operations. Electricity is required to power the production equipment, and the energy used is covered by green electricity certificates, sourced from wind energy. A cardboard box is used as packaging for transporting products to points of sale. Ancillary materials include only compressed air. Transport of packaging and ancillary materials is modeled using >32 metric ton EURO 5 lorries, with distances reflecting typical point-to-point logistics within Europe.

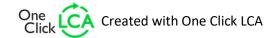

The use of green energy in manufacturing is demonstrated through contractual instruments (GOs, RECs, etc.), and its use is ensured throughout the validity period of this EPD.

TRANSPORT AND INSTALLATION (A4-A5)

5

Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.

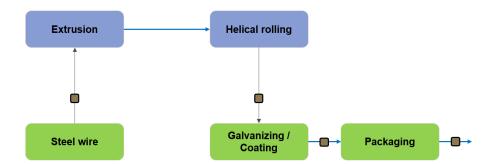
For module A4, transportation to the installation site is modeled in two legs: 908km by road using a 16–32 metric ton EURO 5 lorry, and 4325 km by sea using a container ship. For module A5, no material loss occurs during installation, no additional installation materials are used, and no energy consumption is required. End-of-life (EoL) assumptions for installation waste consider 83% recycled, 8% incinerated, and 9% landfilled. Transport of A5 waste is modeled as 50 km by road using a 16–32 metric ton EURO 5 lorry.

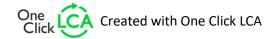

PRODUCT USE AND MAINTENANCE (B1-B7)

Emissions due to installation are excluded as they are considered negligible: a manual hand tool or a handheld cordless power tool is operated for a very short amount of time to complete the installation. The product is embedded within the building structure and therefore undergoes no routine maintenance.

Air, soil, and water impacts during the use phase have not been studied.

PRODUCT END OF LIFE (C1-C4, D)


In a commensurate global average scenario, it is assumed that 85% of the steel within the product is recycled with the remaining 15% dispatched to landfill. Actual recyclability may vary by region.



MANUFACTURING PROCESS

LIFE-CYCLE ASSESSMENT

CUT-OFF CRITERIA

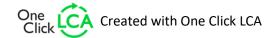
The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

The production of capital equipment, construction activities, and infrastructure, maintenance and operation of capital equipment, personnel-related activities, energy and water use related to company management and sales activities are excluded.

VALIDATION OF DATA

Data collection for production, transport, and packaging was conducted using time and site-specific information, as defined in the general information section on page 1 and 2. Upstream process calculations rely on generic data as defined in the Bibliography section. Manufacturer-provided specific and generic data were used for the product's manufacturing stage. The analysis was performed in One Click LCA EPD Generator, with the 'Cut-Off, EN 15804+A2' allocation method, and characterization factors according to EN 15804:2012+A2:2019/AC:2021 and JRC EF 3.1.

ALLOCATION, ESTIMATES AND ASSUMPTIONS


Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation
Raw materials	No allocation
Packaging material	No allocation
Ancillary materials	Allocated by mass or volume
Manufacturing energy and waste	Allocated by mass or volume

PRODUCT & MANUFACTURING SITES GROUPING

Type of grouping	No grouping
Grouping method	Not applicable
Variation in GWP-fossil for A1-A3, %	

This EPD is product and factory specific.

LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. The EPD Generator uses Ecoinvent v3.10.1 and One Click LCA databases as sources of environmental data. Allocation used in Ecoinvent 3.10.1 environmental data sources follow the methodology 'allocation, Cutoff, EN 15804+A2'.

Manufacturing energy use (A3):

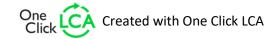
CEER

https://www.ceer.eu/wp-content/uploads/2024/04/C19-EQS-101-03_Report_on_Power_Losses_3.pdf

Construction (A4-A5):

EUROSTAT

https://ec.europa.eu/eurostat/databrowser/view/env_waspac__cus tom 8519259/default/table?lang=en

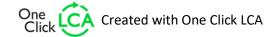

Construction (A4-A5):

Debunking Efficient Recovery: The Performance of EU Incineration Facilities

https://zerowasteeurope.eu/wp-content/uploads/2023/01/Debunking-Efficient-Recovery-Full-Report-EN.docx.pdf

• End of Life (C1-C4):

World Steel Organization fact sheet https://worldsteel.org/wp-content/uploads/Life-cycle-inventory-LCI-study-2020-data-release.pdf


ENVIRONMENTAL IMPACT DATA

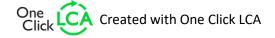
The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding threshold values, safety margins or risks.

CORE ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
GWP – total ¹⁾	kg CO₂e	2,50E+00	6,63E-02	2,96E-03	2,57E+00	2,26E-01	5,97E-02	MND	0,00E+00	2,37E-02	2,31E-02	9,37E-04	-1,59E-01						
GWP – fossil	kg CO₂e	2,49E+00	6,63E-02	3,35E-02	2,59E+00	2,26E-01	7,45E-04	MND	0,00E+00	2,37E-02	2,31E-02	9,36E-04	-1,59E-01						
GWP – biogenic	kg CO₂e	1,94E-03	1,42E-05	-3,15E-02	-2,96E-02	4,66E-05	5,90E-02	MND	0,00E+00	5,36E-06	-6,90E-05	-2,98E-07	-7,92E-05						
GWP – LULUC	kg CO₂e	2,15E-03	2,59E-05	9,21E-04	3,10E-03	1,05E-04	4,09E-07	MND	0,00E+00	1,06E-05	2,72E-05	5,35E-07	7,04E-06						
Ozone depletion pot.	kg CFC-11e	1,47E-08	1,26E-09	8,08E-10	1,68E-08	3,18E-09	7,54E-12	MND	0,00E+00	3,50E-10	2,48E-10	2,71E-11	-2,75E-10						
Acidification potential	mol H⁺e	1,14E-02	2,16E-04	1,80E-04	1,17E-02	1,93E-03	3,02E-06	MND	0,00E+00	8,07E-05	2,47E-04	6,64E-06	-5,61E-04						
EP-freshwater ²⁾	kg Pe	1,08E-03	4,61E-06	2,45E-05	1,11E-03	1,55E-05	1,66E-07	MND	0,00E+00	1,84E-06	1,25E-05	7,70E-08	-5,00E-05						
EP-marine	kg Ne	2,31E-03	7,30E-05	6,22E-05	2,44E-03	5,26E-04	4,94E-06	MND	0,00E+00	2,65E-05	5,49E-05	2,53E-06	-8,39E-05						
EP-terrestrial	mol Ne	2,91E-02	7,94E-04	4,41E-04	3,03E-02	5,80E-03	9,60E-06	MND	0,00E+00	2,89E-04	6,19E-04	2,76E-05	-1,48E-03						
POCP ("smog") ³)	kg NMVOCe	8,10E-03	3,45E-04	1,21E-04	8,57E-03	1,84E-03	3,67E-06	MND	0,00E+00	1,19E-04	1,82E-04	9,90E-06	-4,38E-04						
ADP-minerals & metals ⁴)	kg Sbe	1,99E-05	1,83E-07	3,48E-07	2,04E-05	6,39E-07	4,79E-09	MND	0,00E+00	6,61E-08	1,36E-06	1,49E-09	-2,43E-06						
ADP-fossil resources	MJ	2,65E+01	9,60E-01	6,08E-01	2,80E+01	3,09E+00	6,80E-03	MND	0,00E+00	3,44E-01	2,73E-01	2,30E-02	-1,30E+00						
Water use ⁵⁾	m³e depr.	1,01E+00	4,88E-03	2,09E-02	1,04E+00	1,33E-02	1,88E-04	MND	0,00E+00	1,70E-03	4,31E-03	6,63E-05	2,33E-02						

¹⁾ GWP = Global Warming Potential; 2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e; 3) POCP = Photochemical ozone formation; 4) ADP = Abiotic depletion potential; 5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2


Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
Particulate matter	Incidence	2,01E-07	6,60E-09	1,24E-09	2,09E-07	1,57E-08	4,05E-11	MND	0,00E+00	2,37E-09	3,45E-09	1,51E-10	-1,10E-08						
Ionizing radiation ⁶⁾	kBq 11235e	1,01E-01	1,09E-03	1,09E-02	1,13E-01	2,30E-03	4,44E-05	MND	0,00E+00	2,99E-04	9,79E-04	1,44E-05	1,70E-03						
Ecotoxicity (freshwater)	CTUe	1,01E+01	1,18E-01	2,42E-01	1,05E+01	4,42E-01	2,47E-02	MND	0,00E+00	4,86E-02	1,58E-01	1,93E-03	1,00E+00						
Human toxicity, cancer	CTUh	3,30E-09	1,09E-11	1,22E-11	3,32E-09	4,04E-11	5,44E-13	MND	0,00E+00	3,91E-12	1,85E-11	1,73E-13	7,71E-11						
Human tox. non-cancer	CTUh	3,89E-08	6,24E-10	4,70E-10	3,99E-08	1,72E-09	2,91E-11	MND	0,00E+00	2,22E-10	1,18E-09	3,97E-12	1,21E-08						
SQP ⁷⁾	-	7,49E+00	9,67E-01	8,97E-01	9,35E+00	1,56E+00	5,03E-03	MND	0,00E+00	3,46E-01	5,16E-01	4,52E-02	-6,53E-01						

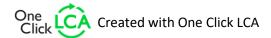
6) EN 15804+A2 disclaimer for lonizing radiation, human health. This impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator; 7) SQP = Land use related impacts/soil quality.

USE OF NATURAL RESOURCES

Impact category Unit Renew. PER as energy ⁸⁾ MJ Renew. PER as material MJ	2,548	A2 E+00 1,51E-02	A3	A1-A3	A4	A5	B1	B2	В3	D4					63			_
		E+00 1,51E-02	2.005.02					D2	D3	B4	B5	B6	B7	C1	C2	C3	C4	D
Renew. PER as material MJ			2,98E-02	2,58E+00	3,90E-02	-3,27E-01	MND	0,00E+00	4,71E-03	4,24E-02	2,22E-04	-1,99E-01						
	0,008	E+00 0,00E+00	2,69E-01	2,69E-01	0,00E+00	-2,69E-01	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,83E-03						
Total use of renew. PER MJ	2,548	+00 1,51E-02	2,99E-01	2,85E+00	3,90E-02	-5,96E-01	MND	0,00E+00	4,71E-03	4,24E-02	2,22E-04	-1,96E-01						
Non-re. PER as energy MJ	2,658	9,60E-01	6,14E-01	2,81E+01	3,09E+00	6,80E-03	MND	0,00E+00	3,44E-01	2,73E-01	2,30E-02	-1,30E+00						
Non-re. PER as material MJ	0,008	E+00 0,00E+00	8,80E-04	8,80E-04	0,00E+00	-8,80E-04	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,77E-07						
Total use of non-re. PER MJ	2,658	9,60E-01	6,15E-01	2,81E+01	3,09E+00	5,92E-03	MND	0,00E+00	3,44E-01	2,73E-01	2,30E-02	-1,30E+00						
Secondary materials kg	3,528	-01 4,14E-04	2,08E-02	3,74E-01	1,41E-03	1,12E-05	MND	0,00E+00	1,46E-04	3,16E-04	5,78E-06	1,06E-01						
Renew. secondary fuels MJ	2,458	5,23E-06	1,95E-03	2,20E-03	1,51E-05	6,32E-08	MND	0,00E+00	1,86E-06	1,43E-05	1,20E-07	-2,10E-05						
Non-ren. secondary fuels MJ	0,008	E+00 0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Use of net fresh water m ³	1,658	-02 1,42E-04	5,67E-04	1,72E-02	3,74E-04	-3,98E-06	MND	0,00E+00	5,08E-05	1,19E-04	2,39E-05	-5,13E-03						

8) PER = Primary energy resources.

END OF LIFE – WASTE

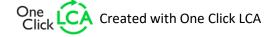

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
Hazardous waste	kg	9,46E-01	1,44E-03	2,19E-03	9,50E-01	5,16E-03	1,17E-04	MND	0,00E+00	5,82E-04	2,13E-03	2,54E-05	-9,38E-02						
Non-hazardous waste	kg	9,04E+00	2,83E-02	9,54E-02	9,17E+00	9,29E-02	1,33E-02	MND	0,00E+00	1,08E-02	5,98E-02	5,80E-04	2,34E+00						
Radioactive waste	kg	2,54E-05	2,70E-07	2,80E-06	2,85E-05	5,64E-07	1,13E-08	MND	0,00E+00	7,33E-08	2,41E-07	3,52E-09	3,84E-07						

END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Components for re-use	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Materials for recycling	kg	0,00E+00	0,00E+00	1,00E-02	1,00E-02	0,00E+00	1,70E-02	MND	0,00E+00	0,00E+00	8,50E-01	0,00E+00	0,00E+00						
Materials for energy rec	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	8,20E-03	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy – Electricity	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,40E-03	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy – Heat	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,80E-03	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						

ENVIRONMENTAL IMPACTS – EN 15804+A1, CML

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
Global Warming Pot.	kg CO₂e	2,48E+00	6,58E-02	3,48E-02	2,58E+00	2,25E-01	2,87E-03	MND	0,00E+00	2,36E-02	2,30E-02	9,28E-04	-1,57E-01						
Ozone depletion Pot.	kg CFC-11e	1,35E-08	1,00E-09	6,66E-10	1,52E-08	2,54E-09	6,17E-12	MND	0,00E+00	2,79E-10	2,06E-10	2,15E-11	-3,08E-10						
Acidification	kg SO₂e	8,86E-03	1,64E-04	1,41E-04	9,16E-03	1,52E-03	2,31E-06	MND	0,00E+00	6,17E-05	1,99E-04	4,91E-06	-4,46E-04						
Eutrophication	kg PO ₄ ³e	1,80E-03	4,12E-05	4,86E-05	1,89E-03	2,29E-04	3,51E-06	MND	0,00E+00	1,50E-05	2,83E-05	1,56E-06	9,25E-05						
POCP ("smog")	kg C₂H₄e	1,01E-03	1,53E-05	1,02E-05	1,04E-03	9,40E-05	6,88E-07	MND	0,00E+00	5,50E-06	1,18E-05	4,65E-07	-1,02E-04						
ADP-elements	kg Sbe	1,97E-05	1,79E-07	3,48E-07	2,02E-05	6,24E-07	4,69E-09	MND	0,00E+00	6,44E-08	1,36E-06	1,46E-09	-2,43E-06						
ADP-fossil	MJ	2,48E+01	9,42E-01	4,15E-01	2,62E+01	3,06E+00	6,03E-03	MND	0,00E+00	3,39E-01	2,57E-01	2,28E-02	-1,33E+00						



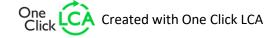
ENVIRONMENTAL IMPACTS – GWP-GHG - THE INTERNATIONAL EPD SYSTEM

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
GWP-GHG ⁹⁾	kg CO₂e	2,50E+00	6,63E-02	3,45E-02	2,60E+00	2,26E-01	7,45E-04	MND	0,00E+00	2,37E-02	2,31E-02	9,37E-04	-1,59E-01						

⁹⁾ This indicator includes all greenhouse gases excluding biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product as defined by IPCC AR 5 (IPCC 2013). In addition, the characterisation factors for the flows - CH4 fossil, CH4 biogenic and Dinitrogen monoxide - were updated in line with the guidance of IES PCR 1.2.5 Annex 1. This indicator is identical to the GWP-total of EN 15804:2012+A2:2019 except that the characterization factor for biogenic CO2 is set to zero.

SCENARIO DOCUMENTATION

Manufacturing energy scenario documentation

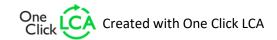

Scenario parameter	Value
Electricity data source and quality	Electricity production, wind, 1-3MW turbine, onshore, renewable energy products (Reference product: electricity, high voltage, renewable energy products)
Electricity CO2e / kWh	0,0245
District heating data source and quality	
District heating CO2e / kWh	

Transport scenario documentation A4

Scenario parameter	Value
Fuel and vehicle type. Eg, electric truck, diesel powered truck	Lorry 16-32 metric to, EURO5; Sea, container ship
Average transport distance, km	908; 4325
Capacity utilization (including empty return) %	100
Bulk density of transported products kg/m3	90
Volume capacity utilization factor	<1

Installation scenario documentation A5

Scenario information	Value
Ancillary materials for installation (specified by	0
material) / kg or other units as appropriate	
Water use / m³	0
Other resource use / kg	0
Quantitative description of energy type	0
(regional mix) and consumption during the	
installation process / kWh or MJ	
Waste materials on the building site before	0,021
waste processing, generated by the product's	
installation (specified by type) / kg	
Output materials (specified by type) as result	0,021
of waste processing at the building site e.g.	
collection for recycling, for energy recovery,	
disposal (specified by route) / kg	
Direct emissions to ambient air, soil and water	0
/ kg	



End of life scenario documentation

Scenario information	Value
Collection process – kg collected separately	1
Collection process – kg collected with mixed waste	0
Recovery process – kg for re-use	0
Recovery process – kg for recycling	0,85
Recovery process – kg for energy recovery	0
Disposal (total) – kg for final deposition	0,15
Scenario assumptions e.g. transportation	Typical distance in Europe: 250km for recycling, 50km for landfilling with lorry >32 metric ton, EURO5

THIRD-PARTY VERIFICATION STATEMENT

VERIFICATION PROCESS FOR THIS EPD

This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with reference standard, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

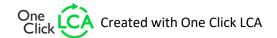
- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- The digital background data for this EPD

Why does verification transparency matter? Read more online

This EPD has been generated by One Click LCA EPD generator, which has been verified and approved by the EPD Hub.

THIRD-PARTY VERIFICATION STATEMENT

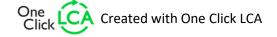
I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of the data collected and used in the LCA calculations, the way the LCA-based calculations have been carried out, the presentation of environmental data in the EPD, and other additional environmental information, as present with respect to the procedural and methodological requirements in ISO 14025:2010 and reference standard.


I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.

I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

Imane Uald Lamkaddam as an authorized verifier for EPD Hub Limited 20.06.2025


APPENDIX

PRODUCTS COVERED BY THIS EPD

The following list of products are included in the scope of this declaration, as represented by HIT-Z M12x196 (item number 2018415).

Item Number	Product name
2018411	Anchor rod HIT-Z M12x105
2018412	Anchor rod HIT-Z M12x140
2018413	Anchor rod HIT-Z M12x155
2018416	Anchor rod HIT-Z M16x155
2018417	Anchor rod HIT-Z M16x175
2018418	Anchor rod HIT-Z M16x205
2018419	Anchor rod HIT-Z M16x240
2018420	Anchor rod HIT-Z M20x215
2018421	Anchor rod HIT-Z M20x250
2018440	Anchor rod HIT-Z 3/8" x 4 3/8"
2018441	Anchor rod HIT-Z 3/8" x 5 1/8"
2018442	Anchor rod HIT-Z 3/8" x 6 3/8"
2018443	Anchor rod HIT-Z 1/2" x 4 1/2"
2018444	Anchor rod HIT-Z 1/2" x 6 1/2"
2018445	Anchor rod HIT-Z 1/2" x 7 3/4"
2018446	Anchor rod HIT-Z 5/8" x 6"
2018447	Anchor rod HIT-Z 5/8" x 8"
2018448	Anchor rod HIT-Z 5/8" x 9 1/2"
2018449	Anchor rod HIT-Z 3/4" x 8 1/2"
2018450	Anchor rod HIT-Z 3/4" x 9 3/4"
2149586	Anchor rod HIT-Z 3/8" x 3 3/8"
2149587	Anchor rod HIT-Z 3/4" x 6 1/2"
2287566	Anchor rod HIT-Z M8x80

2287567	Anchor rod HIT-Z M8x100
2287568	Anchor rod HIT-Z M8x120
2287569	Anchor rod HIT-Z M10x95
2287620	Anchor rod HIT-Z M10x115
2287621	Anchor rod HIT-Z M10x135
2287622	Anchor rod HIT-Z M10x160
2139253	Anchor rod HIT-Z-D TP M16x175
2139254	Anchor rod HIT-Z-D TP M16x205
2139255	Anchor rod HIT-Z-D TP M16x240
2106134	Anchor rod HIT-Z-F M16x155
2106135	Anchor rod HIT-Z-F M16x175
2106136	Anchor rod HIT-Z-F M16x205
2106137	Anchor rod HIT-Z-F M16x240
2106141	Anchor rod HIT-Z-F M20x215
2106142	Anchor rod HIT-Z-F M20x250
2106094	Anchor rod HIT-Z M16x280
2106095	Anchor rod HIT-Z M16x330
2106096	Anchor rod HIT-Z M16x380
2106097	Anchor rod HIT-Z M20x300
2106098	Anchor rod HIT-Z M20x350
2106099	Anchor rod HIT-Z M20x400

